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Corrigés chap. 7  CONSERVATION ENERGIE ET QUANTITE DE MOUVEMENT 
 
Exercice 7.2 : Bilan des puissances réelles 

Une balle élastique de rayon R et de masse m chute sous son propre poids à partir d’une hauteur 
H, s’écrase élastiquement sur le sol puis rebondit. On néglige tout frottement et on utilise un 
axe z vertical dirigé vers le bas (cf. figure 1). Lorsque la balle est en contact avec le sol, sa 
déformation élastique est approximée par le rapport z/R (z est alors positif). 

 
Figure 1 : Chute d’une balle élastique. 
En détaillant chacun des termes du bilan des puissances réelles (éq.7.32 du cours), 
déterminer la quantité qui reste constante au cours du mouvement. 
Le bilan des puissances donne l’équation suivante :  

21 :
2

Dg vdV t vdS v dV dV
Dt

ρ ρ σ ε
Ω ∂Ω Ω Ω

⋅ + ⋅ = +∫ ∫ ∫ ∫
   

    (1) 

Le premier terme représente bien la puissance de la force de gravitation
g vdV g v dV mgvρ ρ

Ω Ω

⋅ = ⋅ =∫ ∫
   

   où v est la vitesse du centre de gravité de la balle qui ne se 

déforme pas avant de toucher le sol.  
En cas d’absence de friction, le second terme est nul car il n’y a pas de résistance due à l’air 
lors de la chute et de plus au moment de l’impact avec le sol, la vitesse en surface de la balle 
est nulle (alors que la force de réaction ne l’est pas) 0t vdS

∂Ω

⋅ =∫
 

 autrement dit, la réaction du 

sol « ne travaille » pas. 
 
Le troisième terme est le terme d’énergie cinétique et vaut : 

 2 2 21 1 1
2 2 2

D D Dv dV v dV mv
Dt Dt Dt

ρ ρ
Ω Ω

   = =   
  

∫ ∫  

Le quatrième terme représente la puissance due à la déformation élastique de la balle quand elle 

est en contact avec le sol avec D
Dt
εε = et Eσ ε= (où E représente le module d’élasticité). Ce 

terme peut également s’écrire :       : :dV E dVσ ε ε ε
Ω Ω

=∫ ∫   
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A l’aide de l’égalité   ( )22 : D
Dt

ε ε ε= , nous obtenons : 

( )2 2 21 1 1:
2 2 2

D D DdV E dV EdV K
Dt Dt Dt

σ ε ε ε ε
Ω Ω Ω

   = = =   
  

∫ ∫ ∫        

En remplaçant les quatre termes par leur valeur calculée, il vient : 

 2 21 1 0
2 2

D Dmgv mv K
Dt Dt

ε   − − =   
   

              (2) 

En remplaçant v par dz
dt

et en intégrant par rapport à t, on obtient : 

 2 21 1
2 2

mgz mv K Cteε   − − =   
   

     

Cela traduit la conservation de l’énergie totale du système : l’énergie de pesanteur se transforme 
en énergie cinétique (lors de la chute) et en énergie élastique lors du contact avec le sol. 
Déterminer la variation de la vitesse lors de la chute libre de la balle, avant qu’elle ne 
touche le sol. 

Avant que la balle ne touche le sol, le terme ( 21
2

Kε ) est nul, et à partir de l’équation (2), nous 

pouvons trouver la vitesse lors de la chute libre de la balle 21
2

Dmgv mv
Dt

 =  
 

, ce qui n’est rien 

d’autre que le théorème de l’énergie cinétique. En remplaçant v par dz
dt

et en intégrant par 

rapport à t, on obtient  ( )2 21 1 soit 0
2 2

dz Dmg mv mg z m v
dt Dt

 = ∆ = − 
 

 

Ainsi la vitesse de chute de la balle devient 0 2v gH=  en z =0  i.e. au moment du contact avec 
le sol.  
Déterminer l’équation constitutive décrivant les variations de l’énergie en fonction du 
temps lors de la compression de la balle en posant z = 0, la position du barycentre de la 
balle au premier contact avec le sol et 0v v=  sa vitesse. De plus, on supposera que la balle 

possède une raideur globale K EdV
Ω

= ∫  où E représente son module d’élasticité. 

Au début de la compression de la balle, z  augmente alors que la vitesse v diminue, à partir de 

l’équation (2), nous avons:   2 21 1
2 2

D Dmgv mv K
Dt Dt

ε   = +   
   

 

À 0z = , on a 0v v=  et l’équation régissant le mouvement devient donc : 

 2 2 2
0

1 1 1
2 2 2

mv K mgz mvε+ − =  

Calculer la coordonnée maxz correspondant à la compression maximum de la balle. 
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Au moment de la compression maximale de la balle, 0v =  et nous avons également max
max

z
Rε =

, qui donne l’équation suivante du deuxième ordre à résoudre ( )
2

2max
max 0

1 1
2 2

zK mg z mvR
  − = 
 

. La solution positive est  
2 2

0
max 2 21 1mgR Kvz

K mg R

  
 = + +    

 

Pour z tel que max0 z z< < , le mouvement d’ascension de la balle doit satisfaire l’équation

 
2 2

2
0

1 1 1
2 2 2

dz zm K mgz mv
dt R

   + − =   
   

      avec z
R

ε = et dzv
dt

=  

La solution de cette équation différentielle non linéaire donnera le déplacement z en fonction 
du temps tant que la balle touche le sol.  
Décrire qualitativement le mouvement d’ascension de la balle. 
En négligeant les frottements, la balle rebondit après avoir touché le sol jusqu’à la position H. 
La séquence chute libre-rebond jusqu’à la position H est alors répétée indéfiniment. 
Discuter de l’évolution du mouvement dans une situation réelle. 
Dans une situation réelle où les frottements ne sont pas négligés, les forces de résistance de l’air 
(et aussi la friction de la balle avec le sol lors de sa déformation) vont peu à peu diminuer 
l’énergie totale de la balle et la hauteur de rebond H va tendre vers 0. 

Exercice 7.8 : Fil conducteur parcouru par un courant, effet Joule 
 
On considère un cylindre (rayon R et longueur L) métallique homogène encastré entre deux 
parois à température fixe T0. Le cylindre étant parcouru par un courant constant d’intensité I, il 
s’échauffe par effet Joule. On note la résistance électrique du cylindre Re = ρL/S, S étant la 
section du cylindre et ρ sa résistivité électrique. La conductivité thermique est notée k en 
W/mK. 
Le cylindre se refroidit en surface par convection avec l’air ambiant modélisée par un flux de 
chaleur 0( ) en r = RTk h T T

r
∂

− = −
∂

. On considère que ce flux est suffisamment petit pour que la 

température dans le cylindre reste monodimensionnelle axiale, i.e. T reste une fonction 
uniquement de z. Un bilan d’énergie sur une tranche dz (approximation de l’ailette) permet de 
montrer que la température T(z) en régime stationnaire est solution de l’équation : 

2
0

2

( )2 0h T TTk q
z R

−∂
− + =

∂
ou q est la densité volumique de chaleur produite par effet Joule. On 

remarquera que T(z) est une fonction paire. 
 
Quelle est l’unité de h ? 
h est en W/m2K pour que le flux de chaleur soit en W/m2 

On pose 
2
kRa

h
=  une constante du problème. Quelle est l’unité de a ? 

a est en m  
Exprimer q en fonction des données du problème. 
q est en W/m3 et vaut : q = ReI2/πR2L 
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Quelles sont les conditions aux limites vérifiées par T(z) ? 
T(L/2) = T(-L/2) = T0 
Déterminer une solution particulière de l’équation différentielle vérifiée par T(z) 

2
0 0

02

( ) ( )2 0,    T = Cste, alors  2   soit  T = T  + qR/2hh T T h T TTk q q
z R R

− −∂
− + = =

∂
 

Chercher la solution de l’équation homogène sous la forme T(z)=αeβz et exprimer β en 
fonction de a. 

2

2

βz 2 -z/a z/a
0

T hTl'équation homogène est  k  - 2  =0
z R

h 2h 1T = αe  , alors  kβ  = 2    soit  β = ±  = ± . Ainsi T = T  + qR/2h Ae  + Be
R kR a

∂
∂

+

 

En déduire le profil de température dans le cylindre en régime stationnaire. 

( )

-z/a z/a
0

-L/2a L/2a L/2a -L/2a

-L/2a L/2a

0 0

T = T  + qR/2h Ae  + Be
T(±L/2) = T0  soit  0 = qR/2h Ae  + Be  et 0 = qR/2h Ae  + Be

A = B = -qR/2h e  + e = -qR/4hch(L/2a)

et T = T  + qR/2h -qRch(z/a)/2hch(L/2a) = T  + qR/

+

+ +

( )2h 1 ch(z/a)/ch(L/2a)−

 

Comment varie la température maximale lorsque le rayon du cylindre décroît ? 
( ) ( )

( )
0 max 0

2 2 2 2 4 2 2 3
e max 0

2 2 3
max 0

T = T  + qR/2h 1 ch(z/a)/ch(L/2a)   est max en z = 0 et vaut T  = T  + qR/2h 1 1/ch(L/2a)

Or q = R I /πR L=ρI /π R  donc  T  = T  + ρI /2π R h 1 1/ch(L/2a)

T  tend vers T  + ρI /2π R h  donc vers l'in

− −

−

fini quand R tend vers 0. 
C'est le principie du filament d'une ampoule

 

On suppose maintenant que la conductivité thermique du fil est infinie, ceci implique que 
la température est uniforme dans le fil. Pour traiter le cas transitoire, l’équation à 

résoudre devient 0( )2 h T T Tq Cp
R t

ρ− ∂
− + =

∂
 sachant que le fil est initialement à la 

température T0 et que le courant I est mis en circulation au temps t = 0. 
2 2 2 20

e 0 e

2
0 e

p-t/

( )2  R I /πR L = ,  on pose u = T-T , 2  R I /πR L =  

sol. particulière: u = R I /2hπRL
ρC R

equa. homogène: 2 = 0,  sol. homogène: u = A e   avec  τ  =  
2h

sol.

h T T T hu uCp Cp
R t R t

T T
u huCp
t R

τ

ρ ρ

ρ

− ∂ ∂
− + − +

∂ ∂
− =

∂
+

∂

( )
2 t/

0 e

2 -t/
0 e

générale: T-T =R I /2hπRL + A e

u=0 en t=0, soit T=T +R I 1-e /2hπRL

τ

τ

 

Résoudre l’équation différentielle obtenue en faisant apparaître une constante de temps 

caractéristique pρC R
τ  =  

2h
. 

Calculer la température du fil pour un temps infini, ceci toujours à intensité de courant 
imposé. 

2
0 eaux temps élevés, T=T + R I /2hπRL  qui tend vers l'infini quand R tend vers 0.  
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