Corrigés chap. 7 CONSERVATION ENERGIE ET QUANTITE DE MOUVEMENT

Exercice 7.2 : Bilan des puissances réelles

Une balle ¢élastique de rayon R et de masse m chute sous son propre poids a partir d’une hauteur
H, s’écrase ¢lastiquement sur le sol puis rebondit. On néglige tout frottement et on utilise un

axe z vertical dirigé vers le bas (cf. figure 1). Lorsque la balle est en contact avec le sol, sa
déformation élastique est approximée par le rapport z/R (z est alors positif).
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Figure 1 : Chute d’une balle ¢lastique.

En détaillant chacun des termes du bilan des puissances réelles (éq.7.32 du cours),
déterminer la quantité qui reste constante au cours du mouvement.

Le bilan des puissances donne 1’équation suivante :

— - ~~ D¢l y
ipg-vdV+a£t-vdS=E£Epv2dV+ia.ng (1)

Le premier terme représente bien la puissance de la force de gravitation
I pg-;dV = §$j pdV =mgv ouv est la vitesse du centre de gravité de la balle qui ne se
Q Q

déforme pas avant de toucher le sol.

En cas d’absence de friction, le second terme est nul car il n’y a pas de résistance due a I’air

lors de la chute et de plus au moment de 1’impact avec le sol, la vitesse en surface de la balle

est nulle (alors que la force de réaction ne 1’est pas) j t-vdS =0 autrement dit, la réaction du
oQ

sol « ne travaille » pas.

Le troisieme terme est le terme d’énergie cinétique et vaut :
ﬂjlpvde = b lVZJ‘,oa’V = ﬂ(lmvzj
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Le quatriéme terme représente la puissance due a la déformation €lastique de la balle quand elle

. D¢ . , e e
est en contact avec le sol avec € = o et o = E¢ (ou E représente le module d’¢lasticité). Ce
t

terme peut également s’écrire : Ia edV = jEe cedv
Q Q



A l’aide de I’égalité 2s:&= g(gz) , hous obtenons :
t

[o:edv = leﬂ(gz)dV -2 lgszdV = 2(11@2)
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En remplacant les quatre termes par leur valeur calculée, il vient :

mgv—ﬂ lmv2 _b lng =0 (2)
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dz . \ .
En remplagant v par ? et en intégrant par rapport a t, on obtient :
t

mgz—(lmvzj—[lez) =Cte
2 2

Cela traduit la conservation de 1’énergie totale du systeme : I’énergie de pesanteur se transforme
en énergie cinétique (lors de la chute) et en énergie €lastique lors du contact avec le sol.
Déterminer la variation de la vitesse lors de la chute libre de la balle, avant qu’elle ne

touche le sol.

1
Avant que la balle ne touche le sol, le terme (EK &%) est nul, et a partir de ’équation (2), nous

pouvons trouver la vitesse lors de la chute libre de la balle mgv = g(% mvzj , C€ qui n’est rien
t

; L ) s C dz L
d’autre que le théoréme de 1’énergie cinétique. En remplagant v par d—et en intégrant par
t

rapport a t, on obtient mg% = Dﬂt(%mvzj soit mgAz = %m(v2 - O)

Ainsi la vitesse de chute de la balle devient v, =/2gH enz=0 i.e. au moment du contact avec

le sol.
Déterminer I’équation constitutive décrivant les variations de 1’énergie en fonction du

temps lors de la compression de la balle en posant z = 0, la position du barycentre de la
balle au premier contact avec le sol et v =y, sa vitesse. De plus, on supposera que la balle

posséde une raideur globale K = J. EdV ou E représente son module d’élasticité.
Q

Au début de la compression de la balle, z augmente alors que la vitesse v diminue, a partir de

I’équation (2), nous avons:  mgv = DL 2Lk
Dt\ 2 Dt\ 2
A z=0,0na v=vy, et ’équation régissant le mouvement devient donc :
1 1 1
—mv’ +—=Ké&* —mgz=—mv,
2 2 2

Calculer la coordonnée z___ correspondant a la compression maximum de la balle.



Au moment de la compression maximale de la balle, v=0 et nous avons égalements = Zm%

max

: SR - - 1 ’ 1
, qui donne I’équation suivante du deuxiéme ordre a résoudre EK (Zm% ) —mg(z,, )= Emvé

: . R? K2
. La solution positive est z = ne I+ || 1+ %
K mg- R

Pour ztel que0<z<z le mouvement d’ascension de la balle doit satisfaire 1’équation

max ?

1 (dzY 1 (zY 1, z dz
—m|— | +=K|— | —mgz=—mv;, avec ¢=—ety=—
2 \dt 2 \R 2 R dt

La solution de cette équation différentielle non linéaire donnera le déplacement z en fonction
du temps tant que la balle touche le sol.
Décrire qualitativement le mouvement d’ascension de la balle.

En négligeant les frottements, la balle rebondit apres avoir touché le sol jusqu’a la position H.
La séquence chute libre-rebond jusqu’a la position H est alors répétée indéfiniment.

Discuter de I’évolution du mouvement dans une situation réelle.

Dans une situation réelle ou les frottements ne sont pas négligés, les forces de résistance de I’air
(et aussi la friction de la balle avec le sol lors de sa déformation) vont peu a peu diminuer
I’énergie totale de la balle et la hauteur de rebond H va tendre vers 0.

Exercice 7.8 : Fil conducteur parcouru par un courant, effet Joule

On considére un cylindre (rayon R et longueur L) métallique homogéne encastré entre deux
parois a température fixe To. Le cylindre étant parcouru par un courant constant d’intensité I, il
s’échauffe par effet Joule. On note la résistance ¢lectrique du cylindre Re = pL/S, S étant la

section du cylindre et p sa résistivité €lectrique. La conductivité thermique est notée k en
W/mK.
Le cylindre se refroidit en surface par convection avec 1’air ambiant modélisée par un flux de

chaleur —kZ—T =h(T —T,) ent=R . On considere que ce flux est suffisamment petit pour que la
.

température dans le cylindre reste monodimensionnelle axiale, i.e. T reste une fonction
uniquement de z. Un bilan d’énergie sur une tranche dz (approximation de 1’ailette) permet de
montrer que la température T(z) en régime stationnaire est solution de 1’équation :
yT_zmT—n)
oz’

remarquera que T(z) est une fonction paire.

k +¢ =0ou q est la densité volumique de chaleur produite par effet Joule. On

Quelle est I'unité de h ?
h est en W/m2K pour que le flux de chaleur soit en W/m2

On pose a =, /l;—];l une constante du probléme. Quelle est 'unité de a ?

a esten m
Exprimer q en fonction des données du probléme.
q est en W/m3 et vaut : q = ReI?/7R*L



Quelles sont les conditions aux limites vérifiées par T(z) ?
T(L/2) =T(-L/2) =To
Déterminer une solution particuliére de I’équation différentielle vérifiée par T(z)
82T_2h(T—TO)+ WT-T,)
oz’ R R
Chercher la solution de I’équation homogéne sous la forme T(z)=cef” et exprimer B en
fonction de a.

k

q=0, T=Cste,alors 2 —¢ soit T=T, +qR/2h

2
l'¢quation homogene est kg—f - Zh—T =0
z

T =ae™ , alors kp* = 2% soit p== /% —+1 AinsiT= T, + qR/2h +Ae™ + Be™
a

En déduire le profil de température dans le cylindre en régime stationnaire.
T=T, +qR/2h +Ae™ + Be™

T(L/2) =TO soit 0 =qR/2h+Ae™* + Be"™ et 0 = qR/2h + Ae"* + Be™™
A=B=-qR/2h(e™* +¢"**)=-qR/4hch(L/2a)

et T =T, + qR/2h -qRch(z/a)/2hch(L/2a) = T, + qR/2h (1 - ch(z/a)/ch(L/Za))
Comment varie la température maximale lorsque le rayon du cylindre décroit ?
T =T, + qR/2h(1-ch(z/a)/ch(L/2a)) estmax enz=0etvaut T =T, +qR/2h(1—1/ch(L/2a))

Or =R I’/nR’L=pI’/n’R"* donc T, =T, + pI’/2n°R’h(1—-1/ch(L/2a))
T, . tend vers T, + pI’/2n’R’h donc vers l'infini quand R tend vers 0.

C'est le principie du filament d'une ampoule

On suppose maintenant que la conductivité thermique du fil est infinie, ceci implique que
la température est uniforme dans le fil. Pour traiter le cas transitoire, I’équation a

)

résoudre devient —Zh(TT_+q=pCp2—T sachant que le fil est initialement a la
t

température To et que le courant I est mis en circulation au temps t = 0.
T-T, T
—2u+ R I’/nR’L = pCpG—, on pose u=T-T,,— 2h_u+ R I’/nR’L = pCpa—u
ot R ot
sol. particuliére: u= 7' — T, =R I’/2hnRL
pC R

p

2h

equa. homogene: pCpaa—L; + 2%2 0, sol. homogéne: u=Ae"" avec T =

sol.générale: T-T,=R ,I*/2hnRL + A e'"
u=0 en t=0, soit T=T,+R I’ (l—e‘t/ T)/ZhnRL
Résoudre I’équation différentielle obtenue en faisant apparaitre une constante de temps
pC,R
2h
Calculer la température du fil pour un temps infini, ceci toujours a intensité de courant
imposé.
aux temps élevés, T=T,+ R I’/2hnRL qui tend vers l'infini quand R tend vers 0.

caractéristique T =
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